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Abstract

In this paper, we propose an ordinal hyperplane rank-
ing algorithm called OHRank, which estimates human ages
via facial images. The design of the algorithm is based
on the relative order information among the age labels in
a database. Each ordinal hyperplane separates all the fa-
cial images into two groups according to the relative order,
and a cost-sensitive property is exploited to find better hy-
perplanes based on the classification costs. Human ages
are inferred by aggregating a set of preferences from the
ordinal hyperplanes with their cost sensitivities. Our ex-
perimental results demonstrate that the proposed approach
outperforms conventional multiclass-based and regression-
based approaches as well as recently developed ranking-
based age estimation approaches.

1. Introduction

In recent years, there has been growing interest in age es-
timation based on facial images. Age information is useful
in a variety of applications, such as human-computer inter-
action, surveillance monitoring, and video content analysis.
The objective of age estimation is to evaluate a person’s ex-
act age or age-group based on features derived from a fa-
cial image. In this paper, we focus on predicting a person’s
exact age, but the proposed method can also be applied to
age-group estimation.

Existing approaches formulate the age estimation prob-
lem as a multi-class classification problem [14, 30, 25, 10]
or a regression problem [9, 18, 12, 11, 31]. Given a set of
N training examples tpxi, yiq|i � 1, . . . , Nu, where xi is
the i-th training facial image and yi is the age label of xi,
multi-class classification approaches simply treat yi as a set
of discrete labels and learn a classifier to infer the person’s
age. Regression approaches basically learn a function that
best fits the mapping from xi to yi with appropriate regular-

ization. First, we discuss the two approaches based on the
nature of the problem.

In a multi-class problem, the class labels are basically
uncorrelated. Hence, multi-class classification approaches
may ignore some characteristics for age estimation, because
the labels are assumed to be independent or have no inherent
relationship to each other. However, the age labels them-
selves are ordinal by nature, i.e., they have strong interrela-
tionships, since they form a well-ordered set. For example,
if a child is 10-years old, the age label is more likely to be
related to a label for 9- or 11-year-old children than to a
label for 8 or 12-years old. Typical multi-class approaches
cannot reflect this property because the labels are treated
unrelated.

Regression approaches, on the other hand, consider the
labels as numerical values that utilize the ordering infor-
mation for age estimation. It has been shown that they
[11, 26, 31, 12] achieve a better performance than classifi-
cation approaches. Many nonlinear regression approaches,
such as quadratic regression [11], Gaussian Process [26, 31]
and Support Vector Regression (SVR) [12, 11], have been
used to solve the age estimation problem. However, the hu-
man face matures in different ways depending on the per-
son’s age, e.g., bone growth in childhood and skin wrin-
kles in adulthood [20]. This property makes the random
process formed by human aging patterns non-stationary in
the feature space; thus, the kernel functions used to mea-
sure the pair-wise similarities between ages could be shift-
or time-varying. Nevertheless, learning non-stationary ker-
nels is difficult for a regressor because it is apt to overfit the
training data.

In recent years, there has been growing interest in learn-
ing to rank models in the machine learning community. The
concept of ordinal ranking has attracted increasing attention
for age estimation because human aging processes show di-
versity in different age ranges. For example, the difference
in the aging process between 50- and 55-years old is not
equivalent to that between 5- and 10-years old. Facial ag-

585



ing effects appear as changes in the shape of the face dur-
ing childhood and changes in skin texture during adulthood.
Hence, given two labels k1 and k2, the “larger than” infor-
mation (k2 ¡ k1 or k1 ¡ k2) could be a more reliable
property for age estimation than the differences between the
labels.

In this paper, we employ the relative order of age labels
because it provides more stable information than exact age
values. Ranking is often used in information retrieval and
formalized as a “learning to rank” problem that maps the
given documents into ordered ranks. Some early schemes
simply performed ranking based on regression [6] or clas-
sification [16]. Other popular schemes include pointwise
ordinal regression and pairwise preferences. Herbrich et
al. [13] proposed a ranking approach called Ranking SVM,
which is based on hinge loss and SVM formulation. Rank-
ing SVM (and several variations of the approach) takes the
difference between two feature vectors as input for learn-
ing, and maps the higher ranked vector to higher scores
during testing. Similarly, RankBoost [8] and RankNet [2]
employ exponential loss and cross entropy loss respectively
for learning pairwise ranking algorithms.

Ranking SVM only uses a single hyperplane to infer the
order, which may not be enough to represent the different
class boundaries of distinct labels. In [22], Shashua and
Levin proposed utilizing a set of parallel hyperplanes as the
ranking model, and constructed an SVM-based formulation
to solve the common normal vector and the shifting con-
stants (i.e., thresholds) of the parallel hyperplanes. Subse-
quently, Lin and Li [15] extended the approach in [22] and
developed RED-SVM, which uses the costs that are sensi-
tive to labels to further improve the performance. Unlike
Ranking SVM, the ordinal regression approach formulated
by parallel hyperplanes yields well ranked results directly
and infers the threshold for each rank automatically.

However, single or parallel hyperplanes could still be
too restrictive to reflect the diverse distributions of differ-
ent classes. To resolve this problem, Qin et al. [19] pro-
posed a multiple-hyperplanes approach called Multiple Hy-
perplanes Ranker, which employs several (possibly non-
parallel) hyperlanes for pairwise comparison and then ag-
gregates the results. Multiple Hyperplanes Ranker uses
Ranking SVM as base ranker and aggregates rank informa-
tion between two classes. The approach enables a single
ranker to handle the relationship between instances from
different ranks. If there are K classes, Multiple Hyper-
planes Ranker constructs KpK � 1q{2 rankers for the class
pairs. Although the approach improves the performance
of single hyperplanes because their form is less restrictive,
it does not make complete use of the ordering informa-
tion among the labels. Basically, the Multiple Hyperplanes
Ranker only uses part of ordering information and reduces
the ranking problem to a one-versus-one classification prob-

lem.
In this paper, we propose an approach that fully utilizes

a well-ordered set of relationship labels. Given a well-
ordered set of labels, such as human ages, the approach
separates the labels into two groups based on the follow-
ing ordering property: larger than and no larger than a
label k. By exploiting this property, we can form K � 1
subproblems, which are considerably less complex than the
KpK � 1q{2 setting. Although we could use the conven-
tional one-versus-all strategy to form K � 1 subproblems,
it increases the number of imbalanced subproblems. More-
over, it does not exploit the order of the relationships among
labels.

We also formulate a cost sensitive property to deal with
each subproblem. Recently, the cost sensitive property con-
cept has been discussed in the machine learning field as
an effective way to reflect the severity of misclassification
problems. The goal of cost-sensitive learning is to mini-
mize the total cost rather than the total error as the cost of
misclassification typically varies among different pairs of
labels. We propose a cost-sensitive ordinal ranking frame-
work for age estimation in this paper.

Although not a hyperplane-based ranker, an early ap-
proach [7] also integrates K classification probabilities ac-
cording to the orders for ranking. However, their base clas-
sifier is built by decision tree that could not be discrimi-
nating enough, and the cost-sensitive property has not been
considered. Experimental results demonstrate that our algo-
rithm outperforms several state-of-the-art methods on two
popular age estimation databases. The contribution of this
paper is two-fold.

1) We formulate a series of proper subproblems for age
estimation based on the ordering information which is a dis-
tinctive feature of age labels.

2) We utilize the cost sensitivity of labels for age estima-
tion, which has not been well studied before.

The reminder of this paper is organized as follows. In
the next section, we review related works. In Section 3,
we describe the framework of OHRank, the proposed cost-
sensitive ranking-based age estimation approach; and in
Section 4 we present the experimental results. Section 5
contains some concluding remarks.

2. Related Work
In recent years, a number of age estimation approaches

have been proposed. Lanitis et al. [14] were the first to
use Active Appearance Models (AAMs) [5], which com-
bine shape and intensity variation in facial images. Age
estimation is regarded as a classification problem that can
be solved by the shortest distance classifier and neural
networks. The approach also differentiates between age-
specific estimation and appearance-specific estimation. The
former assumes that the aging process is the same for ev-
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eryone; while the latter is based on the assumption that peo-
ple who look similar tend to have similar aging processes.
Personalized age estimation used in the specialty of aging
processes is then introduced to cluster similar faces before
classification.

Geng et al. [10] proposed a personalized age estima-
tion method that describes the long-term aging process of
a person and estimates his/her age by minimizing the re-
construction error. However, person’s facial features could
still be similar in different age ranges. Zhang et al. [31]
developed a more accurate model that considers both com-
mon and person-independent information in a multi-task
learning framework, and uses a warped Gaussian process
to model a person’s face. How the long-term aging process
will affect a person may not be easy to estimate. Suo et al.
[23] addressed the problem of the lack of long-term dense
aging sequences by building long-term aging patterns from
several short-term patterns because the latter are easier to
obtain.

However, there may still be insufficient long-term or
short-term aging patterns when there are not enough sam-
ples of a person’s face. Hence, many studies have focused
on non-personalized approaches. For example, Yang and Ai
[30] used a real AdaBoost algorithm to train a strong classi-
fier by composing a sequence of local binary pattern (LBP)
histogram features. Then, they conducted experiments on
gender, ethnicity and age classifications. Ni et al. [18] pre-
sented a multi-instance regression method that estimates the
ages of faces in images with noisy labels collected from
Web image resources. Guo et al. [12] investigated bio-
logically inspired features comprised of a pyramid of Ga-
bor filters in all positions in faccial images, and used either
Support Vector Machine (SVM) or SVR with Radial Basis
Function (RBF) kernels for evalution.

Some approaches use a manifold learning scheme for ac-
curate modeling and age prediction. Fu and Huang [9] ap-
plied discriminative manifold learning and quadratic regres-
sion to age estimation, and claimed that their framework
is more suitable than linear and cubic regressions. Guo et
al. [11] introduced an age manifold scheme and combined
SVR and SVM to learn and predict human ages. First, ro-
bust regression is employed to approximate the data, after
which classification is used for local adjustment.

Existing approaches, both personalized and non-
personalized, treat age estimation as either a classification
or a regression problem. In this paper, we investigate a
new direction by treating the age labels as ranking orders
instead of exact values or independent tags. To the best of
our knowledge, very few approaches employ the ranking
principle for age estimation. Yang et al. [29] employ the
RankBoost algorithm, which is a single hyperplane ranker
in the feature space, for Harr feature selection and age es-
timation. The drawback of this approach is that it uses a

Figure 1. Ordinal ranking age estimation with a thresholds model
in the kernel space of RED-SVM.

single hyperplane model, which can not reflect the multiple
thresholds of different classes properly. Chang et al. [4] em-
ploy the parallel hyperplanes model RED-SVM [15], but it
is relatively restricted for age estimation. As showen in Fig-
ure 1, RED-SVM constructsK�1 parallel hyperplanes that
simultaneously maximize the K � 1 margins. The obtained
parallel hyperplanes separate the hyperspace into K ranks
by using K � 1 thresholds. The underlying assumption is
that the K classes are well ordered in a unique direction
and separable by hyperspaces. This algorithm is uaually
applied on databases containing a small number of classes
(typically less than 10). When predicting a person’s exact
age, the above assumption may not always hold because K
is often set at 80.

When K is large, it is more difficult to separate data by
using parallel hyperplanes. Multiple Hyperplanes Ranker
[19] can be used to capture more scattered data when K
is large; however, this approach overlooks some potentially
useful cues provided by a well ordered set of labels, as dis-
cussed in Section 1. To resolve this problem, we propose an
ordinal hyperplanes ranker, called OHRank, which aggre-
gates K � 1 binary classifiers based on the order of the la-
bels. Our experiment results demonstrate that the proposed
approach outperforms RED-SVM, RankBoost, and Multi-
ple Hyperplanes Ranker on the standard FG-NET database
and the MORPH Album 2 database.

3. Ordinal Hyperplanes Ranker
For humans, it is easier to distinguish who is the older of

two people than to determine the person’s actual age. When
inferring a person’s age, we may compare the input face
with the fact of many people whose ages are known, result-
ing in a series of comparisons, and then estimate the per-
son’s age by integrating the results. This process involves
numerous pairwise preferences, each of which is obtained
by comparing the input face to the faces in the database.
However, exhaustive comparison of all faces is time con-
suming.

Since our approach only employs the relative order of
labels, we treat the age labels yi as a rank order, yi P
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t1, . . . ,Ku, where K is the number of labels (typically set
as 80 in our approach). Then, for a given age k, we separate
the dataset into two subsets, X�k and X�k , as follows:

X�k � tpxi,�1q|yi ¡ ku

X�k � tpxi,�1q|yi ¤ ku. (1)

Next, we use the two subsets to learn a binary classifier
and conduct the query: “Is the face older than age k?” Each
query reduces the age estimation task to a simple binary
classification problem that determines which face is older.
A series of query results imply the ordinal relationships be-
tween the age labels. Each query forms an exact binary
classification problem that identifies the preferred classes.
Actually, each problem has more data available for training
(i.e., the datasets X�k and X�k ) than just the data for age
k, and could utilize its own feature space for classification.
After a series of such classifications, a set of preferences is
derived and integrated for age estimation.

Let us consider on each subproblem. Given the training
sets X�k and X�k for an age label k, we introduce a cost
sensitive setting to the subproblem. Let the cost of misclas-
sifying the data for age label l in subproblem k be defined
as costkplq, where k, l � 1...K. We explain how the costs
are set later in the following.

In the above scenario, the k-th subproblem is constructed
from the age label k. In this subproblem, the cost of mis-
classifying data could differ according to the application.
For example, when a person’s exact age is very close to k,
we do not care much whether he/she is more than k years
old. However, when the age is far from k, we do care about
the correctness of the inference of “being older than k.” We
use some popular performance evaluation measurements in
age estimation applications as examples. In the mean ab-
solute error (MAE) [10, 11, 12, 9, 4, 31, 26, 23, 14], large
differences between the predicted and the exact ages con-
tribute more to the total error; and in the cumulative score
(CS) [10, 11, 12, 9, 4, 31, 26], the misclassification error in
a tolerable range is set at zero. Hence, wrong inferences of
an age to different ages contribute to different levels of er-
rors. These measures reveal that the cost of misclassifying
data in the subproblem k varies with the data labels. Re-
cently, other measures that consider more practical issues
have been proposed. For example, in [24], Ueki et al. intro-
duced a measure that reflects the impact of misclassification
that is adaptive to age and gender. In this paper, we focus
on the cost sensitive settings for the MAE and CS measures;
however, our approach can also be used for other measures.

For the i-th sample xi, we define the cost of misclas-
sifying xi in the k-th subproblem as ckris � costkryis,
where yi is the age label of xi and ckris ¥ 0. In studies
of cost-sensitive learning, rescaling (or rebalancing) is one

of the most popular techniques. The technique, which re-
sets the importance of data according to the class costs, can
be implemented by various approaches, e.g., data reweight-
ing, data resampling, and moving decision thresholds. Note
that applying the rescaling technique to multi-class data di-
rectly is not appropriate because it causes the inconsistency
of costs problem [33]. However, for binary classification,
the rescaling technique is often applicable [33, 32]. Because
our subproblem is a simple binary classification problem,
we use this technique to find a single hyperplane ranker for
the k-th subproblem. We then use the data reweighted (or
biased penalties) SVM to solve the k-th binary classification
problem with cost sensitivities as follows:

min
wk,bk,ξ

1

2
xwk, wky � C

�¸
i

ckris ξi

�

s.t. zkris pw
T
k φkpxiq � bkq ¥ 1� ξi

ξi ¥ 0,@i, (2)

where zkris � �1 if xi P X�k and zkris � �1 if xi P X�k ,
φk is an implicit mapping in the Hilbert space with a re-
producible kernel function for its inner product evaluation;
and pwk, bkq are the hyperplane parameters in the implicit
feature space defined by φk.

As a single kernel can not fit all subproblems, we use
multiple kernels. Hence, the kernel selected varies with
the subproblem k. A cost-transformation technique called
training set expansion and weighting [17] is applied to
transform the biased-penalties SVM defined in Equation 2
into a standard SVM. To select the kernels for each sub-
problem, multiple kernel learning could be used. However,
we simply apply cross validation to select a single kernel
for each subproblem, and use LIBSVM [3] in our imple-
mentation. Since a kernel is selected for each subproblem,
the kernels used for different subproblems may vary; thus,
each subproblem can find its own feature space for casting.

Then, the discriminating function fkpxq used to model
the confidence of “larger than k” is defined as

fkpxq � xwk, φkpxqy � bk. (3)

In the following, we introduce the costs set for MAE and
CS in our implementation based on the rescaling technique.
The performance measurement MAE is typically defined as

MAE �
Ņ

j�1

|yj � yj |{M, (4)

where yj is the estimated age, yj is the ground truth age and
M is the number of test images. In our work, the absolute
cost associated with the MAE serves as the cost sensitivity
function:

costkplq � |l � k|, for k � 1, ...,K. (5)
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(a) (b)

Figure 2. (a) Absolute cost function and (b) truncated cost function
(L=5) for a 25-years-old person.

The CS performance measurement proposed by Geng et
al. [10] is defined as

CSpLq � pMe L{Mq � 100%, (6)

where Me L is the number of test images with the absolute
error e less than the error level L. CS calculates the per-
centage of test data whose predicted error is less than the
tolerance error level L.

The truncated cost associated with the CS serves as the
cost sensitivity function:

costkplq �

"
0, if pl � Lq ¤ k ¤ pl � Lq
1, otherwise. (7)

Figures 2(a) and 2(b) illustrate the absolute cost function
and the truncated cost function (with L=5), respectively,
when the ground truth age is 25-years. In our experiments,
the two cost functions are used in association with the cor-
responding performance measurements for age estimation.

The steps of the OHRank algorithm are as follows:
Algorithm (OHRank: Ordinal Hyperplanes Ranker):

1. For each k where 1 ¤ k   K,

(a) Divide the original training data into two sets

Z�k � tX�k , ckrisu (8)
Z�k � tX�k , ckrisu, (9)

(b) Use a cost-sensitive binary classifierAk to obtain
a decision function fk based on Z�k and Z�k .

2. Construct a ranking rule r by collecting all the prefer-
ence information

rpxq � 1�
K�1̧

k�1

vfkpxq ¡ 0w, (10)

where v�w is 1 if the inner condition is true, and 0 oth-
erwise.

Table 1. Age range distribution of face images in the FG-NET and
MORPH databases.

Age Range FG-NET (%) MORPH (%)
0-9 37.03 0

10-19 33.83 8.94
20-29 14.37 26.04
30-39 7.88 32.16
40-49 4.59 24.58
50-59 1.50 7.37
60-69 0.80 0.82
70-77 0 0.09

In the OHRank algorithm,Ak could be any binary classi-
fier. Without loss of generality, we use the biased penalties
SVM defined in Equations 2 and 3.

To summarize, the proposed OHRank method constructs
the subproblems based on the ordinal property. Com-
pared to the Multiple Hyperplanes Ranker [19], the pro-
posed algorithm reduces the number of comparisons from
KpK�1q{2 to pK�1q and utilizes all the data to solve ev-
ery subproblem. For example, when K � 80, OHRank
performs 40 times faster than the Multiple Hyperplanes
Ranker. Moreover, in contrast to the one-versus-all strat-
egy, which always generates data-imbalanced subproblems,
OHRank reduces the likelihood of imbalanced subproblems
and employs the ordinal information to construct more ef-
fective subproblems.

4. Experiments
4.1. Data Sets

We performed age estimation experiments on two bench-
mark age databases: FG-NET [1] and MORPH Album 2
[21]. FG-NET contains 1,002 color or gray facial images of
82 individuals with large variations in pose, expression and
lighting. For each subject, there are more than ten images
ranging from age 0 to age 69.

There are two scales of MORPH databases. Since
MORPH Album 1 only contains a similar number of im-
ages of FG-NET, we use the MORPH Album 2 that is a
larger-scale database in our experiments. MORPH Album
2 contains 55,608 facial images with about three images per
person ranging from 16 to 77 years old. To reduce the vari-
ation between ethnic groups, we selected 5,492 images of
people of Caucasian descent, so that cross-race influence
can be avoided.

Table 1 details the age range distributions of the face im-
ages in the two databases; and Figures 3 and 4 show some
examples taken from the databases. Note that the distribu-
tions of the two databases are quite different. We use AAM
[5] as the feature extraction method in the experiments be-
cause it is capable of extracting both the shape and the ap-
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Figure 3. Images of a person from childhood to adulthood in the FG-NET database.

Figure 4. Images of two people in the MORPH Album 2 database.

pearance features of human images. A number of methods
[14, 10, 11] also use AAM for primitive or baseline fea-
ture extraction. Although other feature extraction tools have
been proposed, AAM is still one of the most powerful age
estimation techniques. For both databases, AAM extracts
the number of features that preserve 95 percent of the vari-
ability.

4.2. Experiment Setup

We compare the performance of Multiple Hyperplanes
Ranker (MHR) [19], RED-SVM [4], RankBoost [29], WAS
[10], AGES [10], RUN1 [27], RUN2 [28], LARR [11], GP
[31], and MTWGP [31] on the FG-NET database by us-
ing leave-one-person-out (LOPO), a popular test strategy,
as suggested in [10, 11, 27, 28, 29, 31]. The parameters
are determined via cross validation and a random search
of the nearby parameter combinations. Among the above
approaches, RankBoost, RED-SVM and MHR are ranking-
based, and the others are classification- or regression-based
approaches. For ranking, RankBoost uses a single hyper-
plane, RED-SVM employs parallel hyperplanes, and MHR
employs arbitrary hyperplanes in a one-versus-one setting.

As a small database, recent studies on the improvement
of FG-NET tend to be saturate. This can be reflected
in the results (shown in Section 4.3) that many methods
have closed errors. To evaluate the accuracy of our algo-
rithm, we also make comparisons on the MORPH Album 2
database. In this database, we randomly split the data into
80% for training and 20% for testing over 30 trails. We
then used five-fold cross validation to select the parame-
ters from the training data. In the experiments, we compare
the proposed approach OHRank with standard age estima-
tion SVR, SVM, k-Nearest Neighbors (kNN), Back Prop-
agation neural networks (BP), Binary Tree (BT), and the
RED-SVM and RankBoost ranking approaches. The para-
metric configurations of the above methods are as follows.
In SVR and SVM learning, LIBSVM [3] is used to evaluate
the approaches. The RBF kernel function is used for evalua-
tion and the associated parameters, C and γ, are selected by
five-fold cross validation. The k in kNN is 30. BP is com-

posed of a single layer with 100 neurons, and the number of
output neurons is the same as that of the classes.

4.3. Experimental Results

Table 2 and Table 3 show the MAE results derived on
the FG-NET database and the MORPH database respec-
tively. The results demonstrate that the ranking-based ap-
proaches consistently outperform the regression-based and
classification-based approaches. Among the ranking-based
approaches, RankBoost and RED-SVM have been used in
recent age estimation studies [29] and [4] respectively, and
we implemented MHR for comparison. As RED-SVM is a
cost-sensitive enhancement version of the approach in [22],
it already has a cost sensitive property, although this point
is not made clear in [4]. To be fair, we also added a cost-
sensitive setting in the implementation of MHR. It is worth
mentioning that the CSOVO approach proposed by Lin [17]
can be regarded as a very similar approach to MHR. The dif-
ference lies in the former uses Ranking SVM as base ranker
and the latter uses binary SVM with cost-sensitive property.
Among all the compared methods, the proposed OHRank
algorithm achieves the lowest MAE on both databases, as
shown in Table 2 and Table 3.

Figures 5(a) and 5(b) show the CS curves for different
error levels on both databases. When the CS is fixed, the
smaller error level is more accurate. For all error levels, the
proposed OHRank yileds the highest accuracy among the
compared methods. Since FG-NET is a smaller database,
we believe that the improvement on the MORPH Album 2
could be more meaningful and worth for further study.

Table 4 and Table 5 show the impact of different cost
sensitive settings. As mentioned earlier, the absolute cost
function (Equation 5) is more suitable for the MAE mea-
sure than other cost functions, such as the truncated function
(Equation 7). However, the truncated cost function is more
suitable for the CS measure than the absolute cost function.
We employ both cost functions, and evaluate their perfor-
mance based on MAE and CS. Table 4 shows the MAEs
and CS at error level L=5 on both databases. As expected,
the truncated cost function is better for CS and the absolute
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Table 2. MAEs of the compared age estimation algorithms on the
FG-NET database.

Method MAE
OHRank (Absolute cost) [Ours] 4.48
MTWGP [31] 4.83
LARR [11] 5.07
MHR [19] with cost sensitivities 4.87
RED-SVM [4] 5.24
RankBoost [29] 5.67
RUN1 [27] 5.78
RUN2 [28] 5.33
GP [31] 5.39
SVR 5.91
AGES [10] 6.77
WAS [10] 8.06
SVM 7.25

Table 3. MAEs of the comapred age estimation algorithms on the
MORPH Album 2 database.

Method MAE
OHRank (Absolute cost) [Ours] 6.07 � 0.14
RED-SVM [4] 6.49 � 0.17
SVR 6.99 � 0.07
SVM 7.55 � 0.08
KNN 9.39 � 0.28
BP 10.03 � 1.00
BT 11.97 � 0.24

Table 4. The MAEs and CSs (L � 5) of ranking frameworks on
(a) FG-NET and (b) MORPH.

FG-NET Cost function MAE CS(%)
OHRank Absolute 4.48 74.4
OHRank Truncated 4.56 74.7

(a)

MORPH Cost function MAE CS(%)
OHRank Absolute 6.07 56.3
OHRank Truncated 6.12 56.5

(b)

cost is better for MAE. The differences between the perfor-
mance of employing different cost functions are not signif-
icantly high, and we owe this to the reason that common
cost functions employed for age estimations are correlated
to each other.

We also investigate the performance of OHRank with
and without using cost sensitivities in an experiment based

(a)

(b)

Figure 5. CS curves of the error levels from 0 to 10 years of dif-
ferent age estimation algorithms on (a) FG-NET and (b) MORPH
Album 2 databases.

on the MAE measure. Specifically, we conducted 10 tri-
als of random splits the FG-NET database. The results are
shown in Table 5, where the “Equal” cost function is defined
as costkplq � 1; in other words, it is equivalent to not using
any cost functions. As shown in the table, both the absolute
and truncated costs functions perform better than the Equal
case. We can see from Table 5 that, although not exten-
sively high, the associated cost-sensitive settings suggested
in this paper can consistently enhance the performance for
all cases.
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Table 5. MAEs of OHRank using different cost functions with 10
trails of random splits on FG-NET.

FG-NET Cost function MAE
OHRank Absolute 4.68 � 0.41
OHRank Truncated 4.78 � 0.43
OHRank Equal 4.82 � 0.44

5. Conclusion
In this paper, we have proposed an ordinal hyperplanes

ranker for age estimation based on information about the
relative order of ages. The information of relative order
between ages is more reliably employed than conventional
ways of using it in our ranking framework. The age estima-
tion problem is converted into a series of K subproblems
of binary classifications according to the ordering property.
The cost-sensitive property is introduced to each subprob-
lem to further improve the performance. Our experimen-
tal results demonstrate that, for age estimation based on
human faces, the proposed OHRank method outperforms
other ranking-based methods, as well as multi-class-based
and regression-based methods.
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